
Array Declarations
An object is declared to be an array with the dimension attribute.

logical, dimension (-99:99) :: yes_no
real, dimension (1:9, 0:9) :: x, y
integer, dimension (:,:,:) :: flags

Learn more about array declarations.

Next slide

Array Declarations

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld001.htm [4/12/2000 3:44:43 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/arraydec.html

Rank
The rank of an object is the number of dimensions. yes_no has rank 1. x and y have rank 2. flags
has rank 3. A scalar has rank 0.

Previous slide Next slide

rank

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld002.htm [4/12/2000 3:44:43 PM]

Shape
The shape of an object is a list of integers, as many as the rank, indicating the number of elements along
each dimension. yes_no has shape (199). x and y have shape (9,10). flags has either deferred shape
or assumed shape, depending on the context of the declaration. A scalar has shape (), which is an empty
list. The shape intrinsic function returns the shape of an object.

Previous slide Next slide

shape

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld003.htm [4/12/2000 3:44:43 PM]

Conformability
Two objects are conformable if they have the same shape or one is a scalar. Conformability is required in
various situations, such as assignment.

Previous slide Next slide

conformability

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld004.htm [4/12/2000 3:44:43 PM]

Array Assignment
The right side is evaluated and stored into the variable on the left.

real, dimension (40) :: a, b, c
 . . .
a = 0
b = . . .; c = . . .
 . . .
a = a + 3.7 * b * abs (c)

Previous slide Next slide

assignment

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld005.htm [4/12/2000 3:44:43 PM]

Intrinsic Array Functions
Most intrinsic functions that were in Fortran 77 may have an array argument and the function is
performed on each element of the array (elementally). Some new intrinsic functions are not elemental.

f = sum of ai x cos xi

f = sum (a * cos (x))

s = sum of the positive elements of vector a

s = sum (a, mask = (a > 0))

Learn more about intrinsic array functions.

Previous slide Next slide

intrinsic

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld006.htm [4/12/2000 3:44:43 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/intfunar.html

where Statement and Construct

real, dimension (40, 40) :: a, b
 . . .
where (b /= 0) a = a / b

Previous slide Next slide

where

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld007.htm [4/12/2000 3:44:43 PM]

elsewhere Statement
The elsewhere statement permits array assignments to be done where the logical expression is false.

real, dimension (m,n) :: b
integer, dimension (m,n) :: a
 . . .
where (abs(b) > huge (b)/100.0)
 a = 3
elsewhere (abs(b) > 10.0*epsilon (b))
 a = 2
elsewhere
 a = 1
end where

Learn more about the where construct.

Previous slide Next slide

elsewhere

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld008.htm [4/12/2000 3:44:43 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/where.html

forall Construct and Statement (F95)
The forall statement indicates that computations may be executed in parallel.

forall (i=1:n, j=1:m)
 a(i,j) = i+j
end forall

Previous slide Next slide

forall1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld009.htm [4/12/2000 3:44:44 PM]

A forall statement can be used to assign the elements of the array b of rank one to the diagonal of
array a. This cannot be done with array section notation.

forall (i=1:n)
 a(i,i) = b(i)
end forall

Previous slide Next slide

forall2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld010.htm [4/12/2000 3:44:44 PM]

The following are permitted in a forall body:

assignment statements●

pointer assignment statements●

where constructs●

forall constructs●

Previous slide Next slide

forall3

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld011.htm [4/12/2000 3:44:44 PM]

Sometimes it is desirable to exclude some elements from taking part in a calculation. An optional mask
expression may appear in a forall header. For example,

forall (i=1:n, j=1:m, &
 a(i)<9.0 .and. b(j)<9.0)
 c(i,j) = a(i) + b(j)
end forall

Learn more about the forall construct.

Previous slide Next slide

forall4

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld012.htm [4/12/2000 3:44:44 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/forall.html

Triplet Notation
A part of an array may be designated with a triplet in place of a subscript. If v is rank one:

real, dimension (0:9) :: v
 . . .
v (0:3) ! represents v(0), v(1), v(2), v(3)
v (3:7:2) ! represents v(3), v(5), v(7)
v (7:) ! represents v(7), v(8), v(9)
v (:1) ! represents v(0), v(1)
v (:4:2) ! represents v(0), v(2), v(4)
v (::5) ! represents v(0), v(5)
v (6:1:-2) ! represents v(6), v(4), v(2)

Previous slide Next slide

triplet

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld013.htm [4/12/2000 3:44:44 PM]

a (3, 2:5) ! Shape is (4)

O O O O O
O O O O O
O X X X X
O O O O O
O O O O O

Previous slide Next slide

triplet1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld014.htm [4/12/2000 3:44:44 PM]

a (:, 2) ! Shape is (5)

O X O O O
O X O O O
O X O O O
O X O O O
O X O O O

Previous slide Next slide

triplet2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld015.htm [4/12/2000 3:44:44 PM]

a (2::2, 1:1) ! Shape is (2, 1)

O O O O O
X O O O O
O O O O O
X O O O O
O O O O O

Previous slide Next slide

triplet3

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld016.htm [4/12/2000 3:44:45 PM]

Array Constructor
An array constructor builds an array from a collection of values. The values may be:

A scalar expression as in

real, dimension (4) :: x
x = (/ 1.2, 3.5, 1.1, 1.5 /)

Previous slide Next slide

1.

constructor1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld017.htm [4/12/2000 3:44:45 PM]

● An array expression as in

x = (/ a (i, 1:2), a (i+1, 2:3) /)

● An implied do loop as in

x = (/ (sqrt (real (i)), i = 1, 4) /)

All values of the components must have the same type and type parameters (kind and length). The rank
of an array constructor is always one; however, the reshape intrinsic function can be used to define
rank-two and greater arrays from the array constructor values.

Learn more about array constructors.

Previous slide Next slide

constructor2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld018.htm [4/12/2000 3:44:45 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/arraycon.html

Reshape Intrinsic Function
Suppose we want to construct the integer array:

| 1 2 |
| 3 4 |

The array a1234 can be declared and initialized to this value by either of the following:

integer, dimension(2,2) :: a1234 = reshape &
 ((/ 1, 3, 2, 4 /), shape(a1234))

integer, dimension(2,2) :: a1234 = reshape &
 ((/ 1, 2, 3, 4 /), shape(a1234), &
 order = (/ 2, 1 /))

Previous slide Next slide

reshape

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld019.htm [4/12/2000 3:44:45 PM]

Vector Subscripts
A vector subscript is a one-dimensional array of integers that can be used to select elements from an
array.

real, dimension (0:9) :: v
integer, dimension (3) :: iv
 . . .
v = (/ (1.1*i, i = 0,9) /)
iv = (/ 3, 7, 2 /)
print *, v (iv) ! Prints 3.3, 7.7, 2.2

Learn more about vector subscripts.

Previous slide Next slide

vector

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld020.htm [4/12/2000 3:44:45 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/vector.html

v = (/ (i, i = 1,5) /)
v (2:5) = v (1:4)
! result is v = (1, 1, 2, 3, 4)
! not the same as a do loop

Previous slide Next slide

parallel

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld021.htm [4/12/2000 3:44:45 PM]

Exercise
If a chess or checkers board is declared by

character (len=1), dimension (8, 8) :: board

the statement

board = "R"

assigns the color red (``R'') to all 64 positions.

Previous slide Next slide

1.

ex1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld022.htm [4/12/2000 3:44:46 PM]

Write a statement or statements that assigns ``B'' to the black positions. Assume that board(1,1) is to
be red so that the board is as shown:

R B R B R B R B
B R B R B R B R
R B R B R B R B
B R B R B R B R
R B R B R B R B
B R B R B R B R
R B R B R B R B
B R B R B R B R

Previous slide Next slide

ex1b

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld023.htm [4/12/2000 3:44:46 PM]

Allocatable Arrays
An array that is not a dummy argument may be declared with subscripts ``:'' and the allocatable
attribute. The rank of such an array is fixed, but the subscript bounds may be determined when the array
is allocated during execution of the program.

Learn more about allocatable arrays.

Previous slide Next slide

allocatable

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld024.htm [4/12/2000 3:44:46 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/allocatable.html

real, dimension (:,:), allocatable :: amx
integer n
 . . .
read *, n
allocate (amx (n,n), stat = alloc_status)
 . . .

The value of alloc_status will be positive if the allocation was not successful.

Previous slide Next slide

allocatableex

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld025.htm [4/12/2000 3:44:46 PM]

Assumed-Shape Arrays
Dummy arguments declared with subscripts ``:'' assume the shape of the actual argument passed. This
ensures actual-dummy argument matching of shapes if the ranks match.

call ss (amx)
 . . .
subroutine ss (dummy_array)
 real, dimension (:,:) :: dummy_array
 . . .

Previous slide Next slide

assumed

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld026.htm [4/12/2000 3:44:46 PM]

Automatic Arrays
The size of an array in a procedure can depend on dummy arguments in various ways. For example, a
local array is needed that is the same size as the dummy argument a.

subroutine s (a)
 real, intent (in), dimension (:) :: a
 real, dimension (size (a)) :: temp_a
 . . .

Learn more about automatic arrays.

Previous slide Next slide

automatic

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld027.htm [4/12/2000 3:44:46 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/automatic.html

More Intrinsic Functions
Three students take four exams. The results follow:

 85 76 90 60
score = 71 45 50 80
 66 45 21 55

Largest score:

maxval (score) ! = 90

Previous slide Next slide

scores1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld028.htm [4/12/2000 3:44:46 PM]

 85 76 90 60
score = 71 45 50 80
 66 45 21 55

Largest score for each student:

maxval (score, dim = 2)
 ! = (/ 90, 80, 66 /)

Previous slide Next slide

scores2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld029.htm [4/12/2000 3:44:47 PM]

 85 76 90 60
score = 71 45 50 80
 66 45 21 55

Student with largest score:

maxloc (maxval (score, dim = 2))
 ! = maxloc ((/ 90, 80, 66 /))
 ! = (/ 1 /)

Previous slide Next slide

scores3

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld030.htm [4/12/2000 3:44:47 PM]

 85 76 90 60
score = 71 45 50 80
 66 45 21 55

Average score:

average = sum (score) / size (score)
 ! = 62

!!! Note that ! starts a comment !!!

Previous slide Next slide

scores4

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld031.htm [4/12/2000 3:44:47 PM]

 85 76 90 60
score = 71 45 50 80
 66 45 21 55

Number of scores above average:

above = score > average

 ! T T T F
 ! = T F F T
 ! T F F F

count (above) ! = 6

Previous slide Next slide

scores5

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld032.htm [4/12/2000 3:44:47 PM]

 85 76 90 60
score = 71 45 50 80
 66 45 21 55

above = score > average

 ! T T T F
 ! = T F F T
 ! T F F F

count (above) ! = 6

Did any student always score above the overall average?

any (all (above, dim = 2)) ! = .false.

E student A tests [score(student,test) > average]

Previous slide Next slide

scores6

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld033.htm [4/12/2000 3:44:47 PM]

 85 76 90 60
score = 71 45 50 80
 66 45 21 55

above = score > average

 ! T T T F
 ! = T F F T
 ! T F F F

count (above) ! = 6

Was there any test for which all students scored above the overall average?

any (all (above, dim = 1)) ! = .true.

E test A students [score(student,test) > average]

Learn more about intrinsic array functions.

Previous slide Next slide

scores7

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld034.htm [4/12/2000 3:44:47 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/intfunar.html

Arrays of Random Numbers
What is the probability that a throw of two dice will yield a 7 or an 11? This program uses the built-in
subroutine random_number to generate an array of random numbers between 0 and 1.

Previous slide Next slide

random1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld035.htm [4/12/2000 3:44:47 PM]

program seven_11

 implicit none
 integer, parameter :: number_of_rolls = 1000
 integer, dimension (number_of_rolls) :: &
 dice, die_1, die_2
 integer :: wins

 call random_int (die_1, 1, 6)
 call random_int (die_2, 1, 6)
 dice = die_1 + die_2
 wins = count ((dice == 7) .or. (dice == 11))

 print "(a, f6.2)", &
 "The percentage of rolls that are 7 or 11 is", &
 100.0 * real (wins) / real (number_of_rolls)

Previous slide Next slide

random2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld036.htm [4/12/2000 3:44:47 PM]

contains

subroutine random_int (result, low, high)

 integer, dimension (:), intent (out) :: result
 integer, intent (in) :: low, high
 real, dimension (size(result)) :: uniform_value

 call random_number (uniform_value)
 result = &
 int ((high - low + 1) * uniform_value + low)

end subroutine random_int

end program seven_11

Learn more about intrinsic subroutines.

Previous slide Next slide

random3

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld037.htm [4/12/2000 3:44:48 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/intsub.html

The built-in function count returns the number of true values in any logical array; in this case the value
in the array is true if the corresponding value in the array dice is 7 or 11.

Previous slide Next slide

random4

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld038.htm [4/12/2000 3:44:48 PM]

Exercise
Use the array version of random_int to write a simulation program to determine the percentage
of times exactly five coins come up heads and five come up tails when ten fair coins are tossed
simultaneously.

1.

Previous slide Next slide

ex2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld039.htm [4/12/2000 3:44:48 PM]

Date and Time
Two other useful intrinsic subroutines are date_and_time and cpu_time (F95).

date_and_time can return the date and time as a character string or using numerical values.

cpu_time returns a real value in seconds.

Previous slide Next slide

datetime1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld040.htm [4/12/2000 3:44:48 PM]

program time_it

 implicit none
 integer, parameter :: n = 1000000
 integer :: i, k1, k2, k3, k4
 character (len=8) :: date
 real :: start_time, stop_time
 real, dimension (n) :: a
 real, dimension (n) :: initial

 initial = (/ (1.1*i, i=1,n) /)

 call date_and_time (date = date)
 print *, "Date: ", date(1:4), "-", date(5:6), "-", date(7:8)

Previous slide Next slide

datetime2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld041.htm [4/12/2000 3:44:48 PM]

 k1 = 1; k2 = n-1
 k3 = 2; k4 = n

 a = initial

 call cpu_time (start_time)
 do i = k1, k2
 a(i) = a(i+1)
 end do
 call cpu_time (stop_time)

 print*
 print*, sum(a)
 print*, "CPU time for do loop is ", &
 stop_time - start_time, " seconds."

end program time_it

Previous slide Next slide

datetime3

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld042.htm [4/12/2000 3:44:48 PM]

Another statement is timed, where the do loop is replaced by the assignment using triplet notation:

 a(k1:k2) = a(k3:k4)

Running the code on the Fujitsu compiler and a 333Mhz Sun Ultra produced the following times (in
seconds):

 Loop Triplet

Unoptimized 0.95 2.70

Optimized 0.34 0.25

Previous slide

datetime4

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod4/slides/tsld043.htm [4/12/2000 3:44:48 PM]

	hpc.mil
	Array Declarations
	rank
	shape
	conformability
	assignment
	intrinsic
	where
	elsewhere
	forall1
	forall2
	forall3
	forall4
	triplet
	triplet1
	triplet2
	triplet3
	constructor1
	constructor2
	reshape
	vector
	parallel
	ex1
	ex1b
	allocatable
	allocatableex
	assumed
	automatic
	scores1
	scores2
	scores3
	scores4
	scores5
	scores6
	scores7
	random1
	random2
	random3
	random4
	ex2
	datetime1
	datetime2
	datetime3
	datetime4

